• English physicist Penman started with an energy balance. $\Delta \mathsf{S} = \mathsf{R}_{\mathsf{net}}$

–Neglected G

$$
\Delta S = R_{net} - H - LE = K + L - H - \rho_w \lambda_v E
$$

- English physicist Penman started with an energy balance.
	- –Neglected G
- Rearranging terms

$$
\Delta S = R_{\text{net}} - H - LE = K + L - H - \rho_w \lambda_v E
$$

$$
E = \frac{K + L - H}{\rho_w \lambda_v}
$$

- English physicist Penman started with an energy balance. –Neglected G
- Rearranging terms
- H and E are related by the sat. vapor pressure vs. temperature curve

$$
\Delta S = R_{net} - H - LE = K + L - H - \rho_w \lambda_v E
$$

$$
E = \frac{K + L - H}{\rho_w \lambda_v}
$$

$$
\Delta = \frac{e_s - e_a^*}{T_s - T_a} = 0.212 \frac{kPa}{K}
$$

 $\mathsf{e}_{\mathsf{a}}^*$ is the sat. vapor pressure of the atmosphere.

- English physicist Penman started with an energy balance. –Neglected G
- Rearranging terms
- H and E are related by the sat. vapor pressure vs. temperature curve
- And the Bowen ratio

$$
\Delta S = R_{\text{net}} - H - LE = K + L - H - \rho_w \lambda_v E
$$

$$
E = \frac{K + L - H}{\rho_w \lambda_v}
$$

$$
\Delta = \frac{e_s - e_a^*}{T_s - T_a} = 0.212 \frac{kPa}{K}
$$

$$
B = \frac{H}{E} = \frac{K_H (T_s - T_a)}{\rho_w \lambda_v K_E (e_s - e_a)}
$$

• Skipping a few steps, we get $+(K_{_H}/K_{_F})\Delta$ $=\frac{K+L+(K_HV/\Delta)(e_s-\rho_w\lambda_v+(K_H/K_E)\Delta)}{P_w\lambda_v+(K_H/K_E)\Delta}$ $(K_{H}V/\Delta)(e_{s}-e_{a})$ W *v* V V V V V H V E H^{\prime} ^{\rightarrow} H^{\prime} _{*s*} C_{a} $K_{\,\mu}$ / K $E = \frac{K + L + (K_H V/\Delta)(e_s - e)}{\rho_w \lambda_v + (K_H/K_E) \Delta}$

- Skipping a few steps, we get
- $\bullet\,$ The ratio of K_{H} and K_{E} is the psychometric "constant".

$$
E = \frac{K + L + (K_H V / \Delta)(e_s - e_a)}{\rho_w \lambda_v + (K_H / K_E) \Delta}
$$

$$
\gamma = \frac{K_H}{\rho_w \lambda_v K_E} = 0.066 \frac{kPa}{K}
$$

- Skipping a few steps, we get
- $\bullet\,$ The ratio of K_{H} and K_{E} is the psychometric "constant".

$$
E = \frac{K + L + (K_H V / \Delta)(e_s - e_a)}{\rho_w \lambda_v + (K_H / K_E) \Delta}
$$

$$
\gamma = \frac{K_H}{\rho_w \lambda_v K_E} = 0.066 \frac{kPa}{K}
$$

•Thus,

$$
E = \frac{\Delta(K+L) + K_H V(e_s - e_a)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

- Skipping a few steps, we get
- $\bullet\,$ The ratio of K_{H} and K_{E} is the psychometric "constant".
- Thus,
- $\bullet\,$ Factoring out ${\bf e}_{\rm s}$ and assuming e_s \approx $\bf{e}_{a}^{\;\ast}$ (sat. VP of atmos.)

$$
E = \frac{K + L + (K_H V / \Delta)(e_s - e_a)}{\rho_w \lambda_v + (K_H / K_E) \Delta}
$$

$$
\gamma = \frac{K_H}{\rho_w \lambda_v K_E} = 0.066 \frac{kPa}{K}
$$

$$
E = \frac{\Delta(K+L) + K_H V(e_s - e_a)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

$$
E = \frac{\Delta(K+L) + K_H V e_a^* \left(1 - \frac{e_a}{e_a}\right)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

- Penman simplified further:
- $\bullet\,$ Noting that $\mathsf{K}_{\mathsf{H}}\mathsf{V}$ is $\;$ conductivity of the atmosphere to sensible heat flux from the surface. *K*

$$
E = \frac{\Delta(K+L) + K_H V e_a^* \left(1 - \frac{e_a}{e_a}\right)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

$$
K_H V = \rho_a c_a C_{at} V = \frac{\rho_a c_a k^2 V}{\left[\ln\left(\frac{z_m - z_d}{z_0}\right)\right]^2}
$$

- Penman simplified further:
- $\bullet\,$ Noting that $\mathsf{K}_{\mathsf{H}}\mathsf{V}$ is $\;$ conductivity of the atmosphere to sensible heat flux from the surface. *KH*
- The relative humidity of the atmosphere, W_a.
	- $\mathsf{e}_{\mathsf{a}}^*$ is calculated from temperature .
	- W_a is usually measured.

$$
E = \frac{\Delta(K+L) + K_H V e_a^* \left(1 - \frac{e_a}{e_a}\right)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

 $\sqrt{2}$

$$
K_H V = \rho_a c_a C_{at} V = \frac{\rho_a c_a k^2 V}{\left[\ln\left(\frac{z_m - z_d}{z_0}\right)\right]^2}
$$

$$
W_a = \frac{e_a}{e_a^*}
$$

• Gives us the final form of the Penman Equation: $E = \frac{\Delta (K + L)}{L}$ $(\Delta + \gamma)$ $\frac{1}{a}(1-W_a)$ $\rho_{\scriptscriptstyle w}^{\scriptscriptstyle -1}\lambda_{\scriptscriptstyle v}^{\scriptscriptstyle -}(\Delta+\gamma)$ $\rho_{_{\rm \scriptscriptstyle 1}}$ Δ + $=\frac{\Delta(K+L)+\rho_a c_a C_{at}e_a^{\dagger}(1-\right)}{2\pi\epsilon^2}$ $E = \frac{\Delta(K + L) + \rho_a c_a C_{at} e_a (1 - W_a)}{2E_{at} e_a}$

w^{*v*}*v*

- Gives us the final form of the Penman Equation: *E*
- The Penman Equation does not account for *vegetation.*

$$
E = \frac{\Delta(K+L) + \rho_a c_a C_{at} e_a^*(1-W_a)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

- Gives us the final form of the Penman Equation:
- The Penman Equation does not account for *vegetation.*
- English scientist Monteith rewrote the denominator, the energy released by ET, to account for canopy conductance. *E*=

$$
E = \frac{\Delta(K+L) + \rho_a c_a C_{at} e_a^*(1-W_a)}{\rho_w \lambda_v (\Delta + \gamma)}
$$

The full Penman-Monteith Equation

$$
E = \frac{\Delta (K + L) + \rho_a c_a C_{at} e_a^* (1 - W_a)}{\rho_w \lambda_v [\Delta + \gamma (C_{can} + C_{at})]}
$$