Managing and Assessing Boat Wake Waves

William Glamore, PhD

Water Research Laboratory School of Civil and Environmental Engineering University of New South Wales

UNSW - School of Civil and Environmental Engineering

Boat Wake Waves

• The Need

Development Process

Outcome

Application

UNSW - School of Civil and Environmental Engineering

The Need

- Wave theory dates back to Newton (1687).
- Methods are available for managing large waves in dynamic environments.
- Naval engineers designs boats to make certain types of waves.
- YET, few understand the impact of wake waves and none have developed adequate management strategies.

Background

WAVE THEORY

 Waves are typically characterised by period (T) height (H) and energy (E).

Background

WAVE THEORY

- Within a packet of waves, or wave train, wave height and wave period are used to describe individual waves and/or a series of waves.
- The energy (Jules/m) within the wave train can be calculated by:

 $\rho g^2 H^2 T^2$ 16π

UNSW - School of Civil and Environmental Engineering

Water Research Laboratory

where p = water density, g = gravity constant.

Background

Wash is influenced by:

- Water depth
- Seabed characteristics
- Natural wave environment
- Tidal currents
- Vessel design
- Vessel speed
- Vessel trim
- Loading
- Method of propulsion
- Rate of change in course/speed

Wash typically takes 2-5 boat lengths to fully form.

UNSW - School of Civil and Environmental Engineering

Water Research Laboratory

Main components of divergent waves are:

- Hull form
- Speed
- Speed-length ratio

The Need

Objective: Develop a rigorous scientific method to determine whether a vessel will cause erosion on a selected waterway

UNSW - School of Civil and Environmental Engineering

Management Guidelines

Previously Established Boat Wash Guidelines

Wave Characteristic	Wave Criteria	Source
Maximum Wave Height (H _{max})	28 cm from peak to trough measured 300 m from sailing line in deep water.	Stumbo <i>et al.</i> (1999).
Maximum Wave Height (H _{max})	< 20 cm no action on bank stabilisation required. 20-30 cm requires monitoring. 30-40 cm requires bank engineering assessment and remediation.	Patterson Britton and Partners (2001).
Maximum Wave Height (H _{max})	Based on wave height criteria: $H_{h} \leq 0.5 \sqrt{\frac{4.5}{T_{h}}}$, where H_{h} is H_{max} and T_{h} is mean wave period. (Equates to 0.75m for 2.0 second wave period.)	Parnell and Kofoed-Hansen (2001)
Wave Energy	< 2450 joules/m (150 lb/ft) in the highest significant wave of the wave train as measured 300m from sailing line in deep water.	Stumbo <i>et al.</i> (1999).
Wave Energy, Wave Period and Speed	$1962H_m^2T_m^2 < 60$ joules/m or <180 joules/m; where H_m is the height of the maximum wave in metres and T_m is the period of the maximum wave in seconds measured at a point 23 m abreast of the sailing line in deep water. (60 J/m vs 180 J/m depends on the river)	Australian Maritime College (2003)

Development

Developing management strategies for boat wake waves has been particularly difficult because of:
(1) the lack of standardised wave measurement criteria,
(2) the different wave and shoreline monitoring techniques,
(3) the diverse forms of boat wakes generated and
(4) the wide range of shoreline types encountered.

UNSW - School of Civil and Environmental Engineering Water Research Laboratory

Development: Field Research

Experimental Design

- Criteria include:
 - Number and location of wave staff
 - Deep water, limited current and wind, tidal corrected, no restricted channel effect
 - Limited wave reflection

UNSW - School of Civil and Environmental Engineering

Experimental Design

Experimental Design

 Energy of maximum wave can be related to energy of total wave train

$$E_{Tot} = 10.8 E_{Hmax}^{0.82}$$

UNSW - School of Civil and Environmental Engineering

- **Field information** was useful but did not provide strategy for managing rivers
- Quantitative \bullet methods to assess impact of boat wake waves on causing erosion was needed.
- **DST** was • developed based on field data.

SCIENTIA

SCIENTIA

Wind Energy

- Wind energy at the site is calculated using standard calculations.
- Considerations: ARI, fetch versus duration limited, site data, cumulative energy

UNSW - School of Civil and Environmental Engineering

s y	licro	soft Ex	cel - I	DSTv4.	xls																	J >
9)	Eile	<u>E</u> dit	⊻iew	Insert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp									Тур	e a questior	n for help		8 >
	2	🖬 💪	18	1 🕰 [8-14) - [🔒	Σ -	£↓ £00,	75%	• 🕐	🙄 🛛 Arial		+ 10	• B	I	u 📰 🗄	83	•a• \$	%	🖂 - 👌	- <u>A</u>	•
		1	5	3 3	50	1 k (i) Y 4 F	Reply with 9	<u>Change</u> :	s E <u>n</u> d I	Review											
			•	fx	-999																	
	А		в		C	D		E		F	G	Н			J	К		L	M	1	J	-
1	Ste	р 1:	Calc	ulate	Wind	d Wav	e Cli	mate								> Step	2	_				
2												_										
3		Wind	l Dat	a												< Bac	k					
4		Directi	on	Fe	etch (m)		Wind d	ata duration ((mins)		1	0										
5		N			450		Extend	ed Duration ((mins)		72	0										
6		NNE			875						_											
7		NE			875		Wind sp	peed			1 0.	5										
8		ENE			875		Dracke	ts (mrs)			2	2										
10		ESE			875						4	*										
11		SE			875						5 1	2										
12		SSE			350						6 1	6										
13		s			450							1										
14		SSV			875		No. Ye	ars Wind Dat	a		5	0										
15		SW			4375							1										
16		WSW			3250		ρ (wate	er) (kg/m3) –			99	8										
17		V			675					_												
18		WNW			425					Calcu	ulate ARIs											
19		NINING			350																	
20		Tanaw			300																	

22								
23		Wind Data						
24		Direction	Fetch (m)	¥ind Speed (młs)	% occurrence			
25		N	450	0.5	0.53			
26		N	450	2	1.44			
27		N	450	4	3.51			
28		N	450	8	0.56			
29		N	450	12	0.01			
30		N	450	16	0			
31		NNE	875	0.5	0.48			
32		NNE	875	2	1.41			
4								

Maximu Adjusted	Maximum Single Wind Wave Hindcasting					12 Hour Duration Wind Wave				
wind speed (m/s) (if duration limited)	U- ICENI	н.,.	т.	Energy of Maximum Vave (kg.m/s²)	Adjusted wind speed for 12 hour duration	U- јсенј	н.,.	т.		
0.48	0.0	0.004	0.27	2.87E-03	0.40	0.0	0.004			
1.93	0.1	0.018	0.44	1.26E-01	1.60	0.1	0.015			
3.89	0.1	0.038	0.56	8.77E-01	3.19	0.1	0.031			
7.83	0.3	0.081	0.72	6.53E+00	6.39	0.2	0.065			
11.79	0.5	0.128	0.84	2.22E+01	9.58	0.4	0.101			
15.78				-9.99E+02	12.77					
- 0.26	0.0	0.003	0.28	1.63E-03	0.40	0.0	0.005			
1.91	0.1	0.025	0.55	3.72E-01	1.60	0.1	0.021			
-		<		IIII				>		

Deadu

-

Sum-59516288-92

NEIM

Step 2: Calculate Boat Wave Energies and Compare with Wind Wave Climate

Wakeboard Operating WakeboardOperating 0.25 1.57 293
93 Joules/m energy and is energy of ARI > years
1138
11383
11383 Joules/m of wind waves over vears

Nave Attenuation	
Distance of Boat from Shore	200
Attenuated Wave Height	0.12
Attenuated Maximum Wave Energy Joules/m)	66
The attenuated maximum boat wave has 66 Jo and is equivalent to a wind wave with energy (ules/m energ of ARi >
l in 2.71 years	
Energy of Wave Train (Joules/m)	335
No. Boat Passes/12 hours	10
2 HOUR ENERGY (Joules/m)	3353
The energy of 10 attenuated hoat passes = 33:	53 Joules/m
and is amination to the energy of wind waves	over
nio is equivalent to the energy of white waves	
12 hours duration with ARI>	
12 hours duration with ARI > 1 in 0.04 years	

UNSW - School of Civil and Environmental Engineering

DST-Boat Waves

- Includes:
 - Individual maximum waves
 - Wave train
 - Energy of wave train over time (Energy of Hmax vs Energy of total wave train).
 - Wave attenuation
 - Number of boat passes

UNSW - School of Civil and Environmental Engineering

Management Outcomes

 Based on the comparison of wind waves versus boat waves a rating is given (A-E)

	Equivalent ARI of boat wake wave energy over an extended period (typically 8 - 12 hours)								
Equivalent ARI for maximum boat wake wave energy	<1	1-2	2-5	5-10	10-20	>20			
<1	А	А	В	С	С	С			
1-2	А	В	В	С	С	D			
2-5	А	В	С	С	D	D			
5-10	В	В	С	С	D	D			
10-20	В	С	С	D	D	E			
>20	В	С	С	D	E	E			

UNSW - School of Civil and Environmental Engineering

Bank Erosion Issues

UNSW - School of Civil and Environmental Engineering

Low Erosion Potential

Moderate Erosion Potential

(B) MODERATE EROSION POTENTIAL

High Erosion Potential

Category	Indicator	<u>Weighting</u>	Indicator Options
River Type	– Valley Setting	High	Confined, Partially Confined, Laterally Unconfined, Completely Armoured, Partially Armoured
	– Stage variability	Moderate	Tidal, Natural, Regulated
Vegetation	 Longitudinal continuity of bank vegetation over stretch 	High	<10%, 10-30%, 30-60%, >60%
	– Verge cover (10 m from top of bank)	Moderate	<10%, 10-30%, 30-60%, >60%
	– Upper Bank Cover	High	<10%, 10-30%, 30-60%, >60%
	– Wave Zone Cover	High	<10%, 10-30%, 30-60%, >60%
	 Native canopy species regeneration (< 1 m tall) 	Low	None, Scattered, Abundant
	 Native understorey regeneration 	Low	None, Scattered, Abundant
	 Dominant Wave Zone Cover 	High	Bare (vertical slope), Bare (1:3 slope), Bare (<1:7 slope), Rocks, Tree Roots, Mangroves, Grasses, Reeds
Channel	– Bank Slope*	High	Near-Vertical, 1:3, 1:5, 1:7
Features	– Bank Height	Moderate	<1 m, 1-3 m, >3 m
	– Channel width	High	<36 m, 36 -120 m, >120 m
Erosion	– Bank Sediment Type	Moderate	Bedrock/Boulders/Armour, Cohesive, Non-Cohesive, Complex
	– Lateral Stability	Moderate	High, Moderate, Low (based on evidence of channel migration)
	– Sinuosity	Moderate	<1:3,>1:3
	– Erosion above the wave zone	Moderate	Absent, <10%, 10-30%, >30%
	– Slumping	Moderate	Absent, <10%, 10-30%, >30%
	– Undercutting in the wave zone	Extreme	Absent, <10%, 10-30%, >30%
Land use	– Desnagging	Low	None, Conducted in Last Year
	– Excavation	High	Present, Absent
	– Extraction	Low	None, Water, Sediment
	– Stock access	Extreme	Present, Absent

DST FIELD SHEET

Date:	Stretch:
Time:	Section (1,2 or 3):
Assessing Personnel:	GPS Waypoint:
	ar E. N.
	AMG/MGA (circle correct one)
Photo Numbers:	

River Type

Valley		Completely Armoured
setting:	Partly Confined	Partially armoured
	Laterally Unconfined	

Vegetation (Not required if completely Confined or Armoured)

Longitudinal continuity of bank vegetation over	□< 10 %	31-60 %
WHOLE STRETCH:	10-30 %	> 60 %
Verge cover (10 m from top of bank):	□< 10 %	31-60 %
1 ,	10-30 %	> 60 %
Upper Bank Cover:	□< 10 %	31-60 %
	10-30 %	□ _{> 60 %}
Wave Zone Cover:	- < 10 %	31-60 %
	10-30 %	□ _{> 60 %}
Native canopy species regeneration (< 1 m tall):	None	Scattered
6		Abundant
Native understorey receneration:	None	Scattered
		Abundant
Dominant Wave Zone Cover Type:	Bare (vertical slope)	Grasses
	Bare (1:3 – 1:6 slope)	Reeds
	\square Bare (\leq 1:7 slope)	Trees/Tree roots
	Rocks	Mangroves

Channel Features

Upper Bank Slope:	Near Vertical	□ ~1:5 □<17
Channel width:	□<36 □36-120	□>120
Bank Height	□> 3 m □1-3 m	□<1 m

Erosion

Bank Sediment Type:	Bedrock/Boulders/Cobbles/ Armouring Cohesive	Complex (sand & clay)
Erosion above the Wave Zone:	□Absent □<10 % banks	□ 10-30 % banks □> 30 % banks
Slumping:	□Absent □<10% banks	□ 10-30 % banks □> 30 % banks
Undercutting in the Wave Zone:	□Absent □<10 % banks	□ 10-30 % banks □> 30 % banks

Land use

Desnagging:	None	Conducted in last previous year
Excavation:	Present	Absent
Extraction:	None	Water
		Sediment
Stock access:	Absent	Present

Brief Description of Site

LOCATION						
River Type	Erosion Indicator	Assessment	Score	Importance	Veighting	Subtota
	Valley Setting	Partly Confined		2 High	3	6
	Stage variability	Tidal		1 Moderate	2	2
		Category				8
Category	Erosion Indicator	Assessment	Score	Importance	Veighting	Subtotal
Vegetation	 Longitudinal continuity of bank vegetation over stretch 	10-30%	_	-1 High	3	-3
	Verge cover (10 m from top of bank)	10-30%		0 Moderate	2	0
	4. Upper Bank Cover	31-60 %	_	1 High	3	3
	5. Wave Zone Cover	31-60 %		1 High	3	3
	δ. Native canopy species regeneration (< 1m tall)	Scattered		1 Low	1	1
	Native understorey regeneration	Abundant		2 Low	1	2
	 Dominant Wave Zone Cover Type 	Mangroves		1 High	3	3
Subtotal						3
Channel	1. Upper Bank Slope	13		4 High	3	12
	2. Channel width	36-120		0 High	3	0
	3 Bank Height	1-3 m		-1 Moderate	2	0
Subtotal						12
Erosion	1. Bank Sediment Type	Bedrock/Boulders/Cobbles/Armouring	_	Moderate	2	
	2. Lateral Stability	High (no evidence of channel migration)		0 Moderate	2	0
	3. Sinuosity	>1.3		-1 Moderate	2	-2
	4. Erosion above wave zone	10-30 % banks		-2 Moderate	2	-4
	5. Slumping	Absent		0 Moderate	2	0
	Undercutting within the wave zone	< 10 % banks		-1 Extreme	4	-4
Subtotal						-10
Land use	1. Desnagging	None		0 Low	1	0
	2. Excavation	Absent		0 High	3	0
	Extraction	None		0 Low	1	0
	4. Stock access	Absent		0 Extreme	4	0
Subtotal						0
TOTAL SCORE						19

"Bank sediment and bank slope only become important if vegetation quality is not excellent

'If valley setting is Confined or Completely armoured, and bank sediment type is bedrock, automatically score full points for vegetation

Step 3.1: Calculate Site Erosion Potential - Transect 1

> Transect 2

Management Outcome

• Based on the ARI rating and the Erosion Index Rating a management outcome is determined

	Erosion Potential					
ARI Rating	Highly Resistant	Moderately Resistant	Mildly Resistant	Moderately Erosive	Highly Erosive	
A	ALLOW	ALLOW	ALLOW	MANAGE/ MONITOR	MANAGE/ RESTRICT	
В	ALLOW	ALLOW	MANAGE/ MONITOR	MANAGE/ MONITOR	MANAGE/ RESTRICT	
С	ALLOW	MANAGE/ MONITOR	MANAGE/ MONITOR	MANAGE/ RESTRICT	MANAGE/ RESTRICT	
D	MANAGE/ MONITOR	MANAGE/ MONITOR	MANAGE/ MONITOR	MANAGE/ RESTRICT	MANAGE/ RESTRICT	
Е	MANAGE/ MONITOR	MANAGE/ RESTRICT	MANAGE/ RESTRICT	MANAGE/ RESTRICT	MANAGE/ RESTRICT	

SCIENTIA

DST-Management Outcomes

Management Criteria

Restricted Boat Movements

Monitored Boat Movements

Unrestricted Boat Movements

Reassessed every:

2 years

UNSW - School of Civil and Environmental Engineering

DST includes:

- Max and Duration Waves
- Energy of waves
- Attenuation of waves
- Wave train (not just one)
- Different boat types
- Different operating type
- Wind conditions at site
- ARI of waves
- Comprehensive Erosion Indicators
- Desktop and Field tested

- River setting and site specific
- Weighted Indicators
- Site selection method
- Multiple transects
- Repeat timeframes
- Not overly conservative
- Easily modified
- Based on previous work
- Rapid Assessment
- Expert reviewed
- User Manuals and Tutorials

Application Information

- Users Manual
- Interactive Spreadsheet
- Theoretical Manual
- Field Sheets
- Descriptive Photos
- Presentations and Papers

UNSW - School of Civil and Environmental Engineering

Future Work

- Onsite Application
- Peer Review
- Widespread
 Distribution
- Other boat wake types
- Flume Testing of Erosion Potential

UNSW - School of Civil and Environmental Engineering